241 research outputs found

    Fast Discrete Consensus Based on Gossip for Makespan Minimization in Networked Systems

    Get PDF
    In this paper we propose a novel algorithm to solve the discrete consensus problem, i.e., the problem of distributing evenly a set of tokens of arbitrary weight among the nodes of a networked system. Tokens are tasks to be executed by the nodes and the proposed distributed algorithm minimizes monotonically the makespan of the assigned tasks. The algorithm is based on gossip-like asynchronous local interactions between the nodes. The convergence time of the proposed algorithm is superior with respect to the state of the art of discrete and quantized consensus by at least a factor O(n) in both theoretical and empirical comparisons

    A new approach for diagnosability analysis of Petri nets using Verifier Nets

    Get PDF
    In this paper, we analyze the diagnosability properties of labeled Petri nets. We consider the standard notion of diagnosability of languages, requiring that every occurrence of an unobservable fault event be eventually detected, as well as the stronger notion of diagnosability in K steps, where the detection must occur within a fixed bound of K event occurrences after the fault. We give necessary and sufficient conditions for these two notions of diagnosability for both bounded and unbounded Petri nets and then present an algorithmic technique for testing the conditions based on linear programming. Our approach is novel and based on the analysis of the reachability/coverability graph of a special Petri net, called Verifier Net, that is built from the Petri net model of the given system. In the case of systems that are diagnosable in K steps, we give a procedure to compute the bound K. To the best of our knowledge, this is the first time that necessary and sufficient conditions for diagnosability and diagnosability in K steps of labeled unbounded Petri nets are presented

    Performance Regulation and Tracking via Lookahead Simulation: Preliminary Results and Validation

    Full text link
    This paper presents an approach to target tracking that is based on a variable-gain integrator and the Newton-Raphson method for finding zeros of a function. Its underscoring idea is the determination of the feedback law by measurements of the system's output and estimation of its future state via lookahead simulation. The resulting feedback law is generally nonlinear. We first apply the proposed approach to tracking a constant reference by the output of nonlinear memoryless plants. Then we extend it in a number of directions, including the tracking of time-varying reference signals by dynamic, possibly unstable systems. The approach is new hence its analysis is preliminary, and theoretical results are derived for nonlinear memoryless plants and linear dynamic plants. However, the setting for the controller does not require the plant-system to be either linear or stable, and this is verified by simulation of an inverted pendulum tracking a time-varying signal. We also demonstrate results of laboratory experiments of controlling a platoon of mobile robots.Comment: A modified version will appear in Proc. 56th IEEE Conf. on Decision and Control, 201

    Optimal control of switched autonomous linear systems

    Get PDF

    Stealthy Sensor Attacks for Plants Modeled by Labeled Petri Nets

    Get PDF
    The problem of stealthy sensor attacks for labeled Petri nets is considered. An operator observes the plant to establish if a set of critical markings has been reached. The attacker can corrupt the sensor channels that transmit the sensor readings, making the operator incapable to establish when a critical marking is reached. We first construct the stealthy attack Petri net that keeps into account the real plant evolutions observed by the attacker and the corrupted plant evolutions observed by the operator. Starting from the reachability graph of the stealthy attack Petri net, an attack structure is defined: it describes all possible attacks. The supremal stealthy attack substructure can be obtained by appropriately trimming the attack structure. An attack function is effective if the supremal stealthy attack substructure contains a state whose first element is a critical marking and the second element is a noncritical marking

    Joint state estimation under attack of discrete event systems

    Get PDF

    Discrete-Event Systems in a Dioid Framework: Control Theory

    Get PDF

    Proceedings 18th IEEE Conf. on Emerging Technologies and Factory Automation

    No full text
    corecore